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ABSTRACT

re

Tflis study is a continuatior; /{m;ﬂ*@ flow visualization

studies done in the NPS low-speed environmental wind tunnel.

The long term goal is to map the airwake around a ship model

and scale to full size for the purpose of determining safe
operating envelopes on non-aviation ships. This project,\i:fﬁ,_
gﬁtiiizeb hot wire and hot film anemometry to establish a data

base for helicopter approach paths at O:f'zwfégort, and :wf"?
starboard ship yaw angles. Calibration of the wind tunnel
revealed that some turbulence generators, used in:\é:e previous
tvgétudies, created excessive turbulence intensity levels and

were sub.sequently removed. Analysis along the flight paths

was done with and without the model in place. The comparison
showed that turbulence intensity levels of up to 50% were
experjienced in the proximity of the flight deck. These levels

fell by 40 to 50% within 1/4 ship length along all approach
paths. The atarboard yaw approach path contained the greatest
turbulence magnitudes and the oa'%aw contained the least.
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I. INTRODUCTION

A. BACKGROUND

v -For surface combatants to meet the requirements of their
complex missions, their ability to conduct helicopter
operations has become increasingly important. Presently, such

ships have the capability to launch, recover, house, and

maintain numerous types of helicopters (helos). The role of

helos in ships' missions varies from minimal, such as that of

most types of cruisers, to primary, as exemplified in FFG-7,

DD-963, and FF-1052 class ships. On these ships, helos are

a major contributor to the Anti-Submarine (ASW) and Anti-
. Surface (ASUW) Warfare mission areas.

Safe operating envelopes are determined for each class of
ship and its respective helo by the Naval Air Test Center
(NATC) . This is an expensive and time consuming process,
mostly done at sea with each class of ship and the various
types of helos the ship is to be certified with. Due to the
shrinking number of naval surface combatants, (i.e. FF's,
DD's, DDG's) the increased number of operational commitments,
and the cost, the process of determining safe operating wind
envelopes at sea is no longer feasible. Cheaper, more
efficient means must be explored. (Ref. 1: p. 1] In a recent

study, Healey (Ref. 2] 1looked at the feasibility o2 a




simulation that would encompass models of ship motion, airwake
from a ship's superstructure, and helicopter motion. He
conciuded that good simulation models were under development
for ship and helo motion separately however, a good model for
the ship airwake and the interface had yet to be developed.
A major problem that demands resolution ig the ability to
quantitatively evaluate the ship airwake and helc interface
during launch and recovery. The combined motion of the ship
and turbulent airwake generated by a ship‘'s superstructure
make launch and recovery the most hazardous phase of ship/helo
operations. Presently, shipboard anemometers are used to
determine relatiQe wind speeds and direction for the
conduction of helo operations.

The current program at the Naval Postgraduate School (NPS)
has the overall goal of making detailed ajirwake maps of model
ships and scaling the results to full size with the aim of
utilizing these as a data base for simulation. Initially
however, the efficiency of single point data modeling will be
explored. Single point data involves the acquisition of data
at single points in a flowfield and analyzing wvarious
statistical information (i.e. mean, standard deviation,
autocorrelation, etc.) to determine velocity components,
turbulence intensities, and energies ©present in the

turbulence, for mathematically modelling the airflow. The

flowfield around DD-963 Spruance Class destroyer has

Lt g7




previously been studied using flow vigsualization techniques
and it was concluded that air flow over the model ship was (1)
a very strong function of the ship's yaw angle, (2) vortical
in nature, and (3) extremely turbulent with strong
recirculating currents. [(Ref. 1: p. 42] The present study is
an essential prereguisite to the current program which
involves quantitative analysis of the ship airwake using hot
wire and hot film anemometry. This project will look at wind
velocities and other statistical properties of the airwake of
a model DD-963 (1/141 scale) in a simulated atmospheric
boundary layer using 3-D hot wire anemometry at various
positions relative to the ship model along typical helo
approach tlight paths. 1In practice, the approach paths vary
with true and relative wind direction, helo and ship velocity,
loading of the helo, and sea state. It is the hope that, if
this simulation is successful, the methods developed in the
present study may be extended to other ship models for
evaluation of their respective ship airwakes.

In 1976, T. S. Garnett of the Boeing Vertol Company,
conducted wind tunnel tests examining the ship generated
airwake of a model (1/50 scale) FF-1052 Class Frigate. The
results were used in formulating math models of airwake
turbulence created by the ship and its superstructure. ([Ref.
3: p. 9) R.L. Fortenbaugh, of the Vought Corporation,

developed mathematical models for DD-963 ship motion and




airwake in an effort to look at the feasibility of DD-963
Class Destroyers operating with Vertical, Short Take-off and
Landing (VSTOL) aircraft. Completed in 1978, the simulation
resulting from this effort will be discussed later. In
developing the airwake modei, the Boeing Vertol FF-1052
airwake data base was used and Strouhal scaled by Fortenbaugh
to the DD-963 geometric specifications, a process that has no
scientific basis; however, Fortenbaugh recommended that the
data base be replaced by DD-963 data once available. (Ref.
4: p. 9] 1In 1980, Garnett conducted wind tunnel tests with
a 1/80 scale DD-963 model. Presently a modified version of
Garnett's data is used as a data base in DD-~963 airwake
modeling. (Ref. S: p. 113)

Of note in the two Boeing projects is the fact that the
data were taken under the conditions of a constant velocity
profile and almost 2zero turbulence. The ship models were
mounted on a ground plane elevated off the floor to lift it
out of the wind tunnel boundary layer and expose it solely to
the uniform flow. 1In effect, this process reproduced ship
generated winds. On the other hand, in neutral winds, the
earth's atmosphere is a sheared turbulent boundary layer and
proper simulation of its velocity and turtulence profiles must
be considered when conducting wind tunnel tests. Winds which

have blown over a fully developed rough sea are turbulent and

are characterized by: (1) windspeed averaged over some time




period or temporal speed average, (2) turbulence intensity
(the standard deviation of the along-wind windspeed divided
by the mean windspeed), (3) the longitudinal scale length of
the turbulence (the mean length of the most energetic eddies
in the turbulence), and (4) the spectrum function of the
turbulence, which indicates how the energy is distributed
amongst the frequencies present in the turbulence. [Ref. 2:
P- 4) 1In addition, the ship airwake is a function of the
above plus the wind/ship speed ratio (due to the effects on
turbulence intensity) and the relative wind direction which
is a function of ship's yaw angle.

Empirical relationships are available from the Engineering
Sciences Data Unit (E.S.D.U.) [Ref. 6] which show that the
free stream flow parameters are functions of the mean
windspeed, elevation from the surface or mean wave height, and
the roughness 1length scale of the sea. According to
Davenport, [Ref. 7: p. 548] over rough seas, the surface
roughness length scale is usually between 0.001 and 0.01
meters. Elevation is taken as flight deck height above the
mean wave height or the position of the helo during launch and
recovery. Windspeed and elevation are related in the equation
U/U, ¢ = (2/2.,4)" where U is the along-wind velocity at a

specific elevation, 2. U and Z , are the free strean

ref

velocity and height respectively at some reference point.

(Ref. 8: p.579] The factor "n" is a constant and should be




matched in the wind tunnel and full scale flows. Fcr tunnel
calibration, the *"2" will be the height at the top of the
boundary layer (about 0.8m) and the U, will be the velocity
at that height. Por data acquisition in the airwake, it is
more appropriate to reference the measurements to the velocity
at ship anemometer elevation.

Exact duplication of every aspect of the atmospheric flow
field at a smaller scale is impossible; however,
simplifications are permitted due to the special nature of the
atmospheric boundary layer. Modelling of the wind profile is
generally possible for a neutrally stratified boundary layer;
an exception is the intermittency in the flow. A low speed
wind tunnel at NPS has had a thick boundary layer set up using
the procedures established by Counihan [Ref. 8: p. 590) with
upstream vortex generators and additional turbulence
generators to provide a simulated atmospheric boundary layer.
Velocity profiles for the Boeing Vertol tests and the NPS
tunnel are shown below in Figure 1.

An element of this project is to compare the NPS and
Boeing Vertol DD-963 data. It is noteworthy that the Boeing
study used up to ten 3-D split film hot wire probes in their
tests and used a large, crude, and non-streamlined mechanical
support device that almost certainly generated flow

interference. 1In the NPS tunnel, the probe will extend well

forward of its supports to eliminate, or at least minimize,




S=v T ATN T L WEDD . BT

(a) (b)

100 4

200

100

100

100

100 J

Height (meters) vs. % Free Stream Velccity

Figure 1. Velocity Profiles for (a) NP8 Wind Tunnel and
(b) Boeing Vertol Tests

possible interference. Boeing Vertol indicated that they
found no spatial correlation between their probe signals;
however, no attempt was made to rigorously analyze the test
data for math modelling purposes. Single point data will be
obtained in the NPS tunnel and autocorrelatiocns will be used
to estimate the length scales in the flow. If the turbulent
velocity fluctuations are small compared with the mean along-
wind velocity, the eddies of the turbulence should not change

appreciably in shape and, with autocorrelation, eddy sizes can

be eatimated [Ref. 9: p. 30). These single point data will




be used in an attempt to obtain a simple data base for
validation of the existing simulator models. If the single
point data proves unsuccessful, the NPS model will be expanded
to include multiple data points to obtain spatial correlations
between the various hot wire probes. Such data will be used
in conjunction with more sophisticated helo mathematical
models.

A ship is an example of a bluff body - one with a massive
separated wake. A most important feature of such sharp-edged
bodies is that there is essentially no change in flow patterns
when the flow Reynolds number is above a certain low minimum.
With a constant beam based Reynolds number greater than about
10,000, viscous to inertial simulation of the ship airwake can
be achieved using wind tunnel speeds of 1.2 m/s and above.
However, if the wake of an oscillating ship is to be modeled,
due to the frequency limitation on the oscillating mechanisnm,
the ship's airwake can be modeled in a tunnel with equality
of Strouhal number (frequency of ship's oscillation * ship's
bean / free stream velocity), only if the velocity is
approximately 3 m/s or less. In the present study, this
Strouhal number eguality is unnecessary because the model is
stationary. However, it will be used to determine the
frequency ratio between the turbulence around the scaled model
and that on the full sized ship. Assuming the wind gust

frequency necessary to move a helo, as a whole, of at most 1



Hz in a wind of 20 m/s (about 40 knots) and a tunnel boundary
layar effactive wind velocity of 2 m/s at about helo-deck
height, measurements will need to take turbulence frequencies
below 14.1 Hz into account. 8Since this goal is easily met,
the filter cut-off frequency will be set at much higher levels
s0 that the data can be used for vehicles much smaller than
helos. This will be discussed further at a later point.
Future studies incorporating ship motion will have to take

S8trouhal scaling of the ship motion into account.

B. SHIPBOARD OPBRATIONS

The DD-963 "Spruance-Clasa" destroyer is one of the
surface navy's primary players in ASW, ASUW, and carrier
escort operations. This multi-mission ship's ability to
conduct operations is greatly enhanced by its ability to
launch and recover helos. The ship is 563 feet long with a
bean of 55 feet. Displacement ranges between 7200 and 7800
tons. Numerous types of helos are certified to conduct
operations with the DD-963 including the SH-2F, 8H-3, CH~46,
and the 8H-60. Most of the 963s embark an SH-2F detachment
for work-ups and deployment. Some 9638 have been retrofitted
with the Recovery Assist, Secure and Traverse Syatem (RAST)
for use exclusively for the S8H-60 helicopter.

The flight deck is located aft of the helo hangar on the
02 level 33 feet above the waterline with a 2200 square foot

et
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landing pad. Between the landing area and the hangar on the
sanme deck is 440 square foot arsa used for the helo refueling
hose veel, the Twin Agent System for firefighting, and space
to provide room for the landing signalman during helo
evolutions. (See Figure 2) The hangar is 49 feet long, 26
feet wide and 18 feet high. On top of the helo hanger, on the
starboard side, are the exhaust stacks for the number two
engine room's two propulsion gas turbines and its gas turbine
electric generator. &hesc stacks protrude from a 20 X 14 X
10 foot pedestal. Also on top of the hangar are the Mk 15
Close In Weapons System and its magazine, small pyrotechnic

lockers and the Stabilized Glide 3lope Indicator (8GSI).

I

==

B

rigure 2. DD-963 Flight Deck Diagram (Ref. 10)




The 963 also has two vertical replenishment (VERTREP)

stations, one on the forecastle and one on the fantail (01 and
main deck levels respectively). These stations are used
primarily for 5"/54 ammunition on-loads with VERTREP from CH-
46 helo with underslung loads.

Prior to conducting a launch or recovery, the ship is
brought to a course and speed to which the relative wind is
with the wind operation envelope for the evolution being
conducted. Operating envelopes such as Figures 3 and 4 are
published in Naval Warfare Publication (NWP)-42(Series). They
also include maximum pitch and roll permissible for the ship
to conduct launch and recover evolutions. Numerous envelopes
are available based on day or night operations, starboard or
port approaches, and rotor engagements and disengagements.
A discussion with some pilots at NPS revealed that most prefer
relative wii.ds 20-30 degrees of either port or starboard bow
at 15-25 knots, however, preferences can change with different
pilots. This operating condition is well within most helo and
ship operating envelopes. The present project will
concentrate 30° starboard, port, and stern approach paths out

to one ship length aft of the touchdown point.
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Pigure 3. Typical DD-963 rigure 4. Typical DD-963
operatin;, Envelope - Day Operating Bnvelope - Night
Starboard Approach. ([Ref. 11) Port Approach [Ref. 11) .
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II. HOT WIRE ANEMOMETRY

Hot wire anemometry involves the use of a thermal
« anemometer to measure the velocity and its fluctuations in a
fluid flow. This is accomplished by placing a "hot wire,"
essentially a very small diameter heated sensor spanning
support prongs, as one leg of a Wheatstone bridge, and
measuring the volfage change as the fluid flows by. The
sensor thus cools, due to convective heat loss, causing its
resistance and the voltage across the prongs to fluctuate with
the varying speeds. To maintain the scnsor at constant
temperature, the current is rapidly varied by a control
circuit to almost instantaneously balance the bridge network
and correct for the heat loss from the sensor. Voltage
* variations (due to the changing current) are measured and from
this, velocity information can be determined.

In addition to the convective heat transfer from the wire
to the passing fluid, other factors that contribute to the
heat 1loss are operating temperature, geometry, thermal
conductivity of the sensor, characteristics of the passing
fluid, and radiation and end conduction losses. The sensor,
usually at a minimum temperature above 200°C will naturally

transfer heat to the cooler flowing (or still) air around it.

The bridge circuitry provides the voltage that attempts to




maintain the sensor at constant temperature. The sensor is
usually small and presents minimum thermal inertia. Hot wire
sensor diameters are usually between 5 and 9 microns, with
lengths of about 2 to 3 millimeters (zm). In both 3-D films
and wires, the active length of the sensor is only about 1.25
mn. This is to minimize interference and end conduction
losses. Hot film sensors are about 70 microns in diameter.
The sensor must have a high temperature coefficient of
resistance (TCR), a constant which relates resistance change
with temperature. This permits interpretation of voltage
fluctuations in terms of velocity fluctuations. Three
dimensional tungsten wire sensors and nickel film probes are
used in this project with coefficients of 0.42% and about
0.45% respectively (Ref. 12: p. 9]. The passing airflow in
the wind tunnel is sufficiently low in speed to be considered
incompressible and isothermal. End conduction losses occur,
even though the supporting legs are much thicker than the
sensor and are not heated appreciably by the flowing current;
this loss must be accounted for and calibration under
operating conditions ensures this. Radiation 1losses are
negligible being less than 0.1% of the convection loas. With
these assumptions, heat loss by the sensor can be considered

a direct measure of the passing fluid velocity. [Ref. 13:

p. 101)




o kit A

L emalz s #3 -

Sensor temperature is usually expressed as a ratio called
the "overheating™ or "overheat ratio." This relates hot
resistance to ambient resistance. Wires and films are given
a sufficiently high value of overheating to obtain optimum
sengitivity, a high signal-to-noise ratio for the electrical
circuit, and a large output signal. [Ref 12: p. 6) An
important part of the processes of calibration and data
acquisition is determining the operating resistance of the
system. The total operating resistance of the probe, R can
be expressed by the equation:

R=Rygeatt® Rygpient [ Thot sensor=Tasbient )
where R, .i™R adsemeorecarier T = Temperatures, a = TCR, and
Rupism™Resistance of the sensor at ambient temperature [Ref.
12: p. 9]. Heating the sensor increases its resistance and
cooling due to the passing fluid decreases it. The reduced
resistance lowers the voltage across the bridge which in turn
lowers its input to a control amplifier. This amplifier
fluctuates its output inversely proportional to the resistance
change in the sensor. Hence more current is fed back to
restore the wire or film to its initial temperature and
resistance and balance the circuit. [Raf. 14: p. 2) Proper
amplifier gain setting is important to ensure immediate and
proper response of the bridge. The DANTEC 56Cl7 Constant

Temperature Anemometer Bridge and the 56C01 CTA unit are used

in this project to make up the flow anemometer.




Calibration of the constant temperature anemometer is done
basically by recording output voltages over 10 to 15 known
velocities and creating a calibration curve. A problem in
determining the turbulence levels in a real flow is the non-
linearity in the relationship between voltage and velocity.
These are caused by (1) the non-linear nature of the heat
transfer and, (2) quadratic non~linearities due to transverse
velocity perturbations [Ref. 15: p. 118). Electronically
linearizing an analytically gyenerated function about some
appropriate mean is the best way to circumvent the problem.
As long as turbulence intensities are relatively small, small
perturbations in the mean velocity may be guantitatively
;detemined (Ref. 16: p. 275). It is a matter of opinion how
smalil ."rl'elatively small” is; the pessimists give up to 8~10%
and the optimists up to 25-30%. The Dantec 56N21 Electronic
Linearizer can be placed in the path between the CTA unit and
the Analog to Digital (A/D) converter. 1Its transfer function
is automatically adjusted to be the inverse of the
anemometer's transfer function, hence cancelling velocity
information distortions. ({Ref. 17: p. 2) Unfortunately,
electronic linearizers were not available for all channels at
the time of the present project and were not used.

After the sensor is installed and the CTA Bridge is set

to the proper overheating ratio, the calibration can be

accomplished with the use of King's Law for convective
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cooling: E* = A + BU", where E is the voltage output, A and
B are dimensional constants, and U is the effective velocity.
For velocities petween 0.3 and 50 m/s, n is ganerally accepted
to be 0.45. Another way to develop a calibration curve is
through the use of a software program that generates
calibration polynomials for each wire or £ilm. The polynomial
is of the form:
U=C,+ GE + GE? + CE® + ...

where C, are calibration coefficients of the polynomial to be
determined in the calibration process, and E is the voltage
output from the bridge. The program computes the coefficients
of this polynomial of the prescribed degree for each wire of
the 3-D probe. The program has the capability to output the
calibration points with the curve generated vy the polynomial
and an error plot for each wire. For the calibrations in this
project, the polynomials have had an error of less than 4%.
To accomplish the calibration, the Dantec 55D90 Calibration
Equipment is used to produce known velocities. It generates
a variable velocity, low-turbulence (< 5%) free air jet. The
5% design turbulence is found at the low end velocities (1-4
m/s) that will be encountered in this project. This is
desirable, since this turbulence represents conditions closer
to the operating conditions than to a smooth jet flow. A
block diagram of the 55D90 is shown in Figure 5 and a pictures

of the 55D44 (Pressure Control Unit), 55D45 (Nozzle Unit with
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variable area nozzles),

and 55D46 (Pressure Converter) are

shown in Figure 6.

Pigure S.

Diagram of 55D90 Calibration Egquipment
[Ref. 18: p. 3)

Figure 6. Pressure Control Unit with Pressure Converter,
Nossle Unit with Variable Area Mossles [Ref. 18: p. 2)




Primary pressure (the set pressure in the primary chamber
of the 55D90) is read by the pressure converter and its
electrical output is read by a Compaq 386/25 computer through
the Analog-to-Digital (A/D) converter. A scan feature is used
to produce a steadily decreasing velocity from the output
nozzle. The pressure converter is a linear function of the
velocity to within 1%, and its readings are initially placed
in a file together with the voltage readings from the three
wires (or films). ([Ref. 18: p. 4] The acquisition prnogram
accepts the four readings; three voltages and one pressure.

Table I(a) shows an example of a calibration <€ile.
Channels 0, 1, and 2 contain the voltages for the three wires
and channel 3 holds the value for primary pressure
corresponding to the voltage readings at that point. The
first column in the file is assigned for velocities and is
not affected in this acquisition process. The pressures are
then manually converted to velocities and overwritten into the
first column of the file. Once this is done, the pressure
readings can be eliminated and the table of the remairing
three voltages and corresponding velocities exists as shown
in Table I(b). The voltages are then processed to produce
calibration polynomials for each wire. The polynomials are
then used in the data acquisition and processing phase to

determine the airwake velocities from the raw voltages.
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The computed velocities are then further processed to moments,
autocorrelations, and spectrum functions.
Table I. (a) Acquisition Calibration File

(b) Velocity Converted Calibration File with Pressures
Eliminated

Point u chan 0 chan 1 chan 2 chan 3

1 2.2481 2.2885 2.2557 9.0340
2 2.2242 2.2634 2.2315 8.3940
3 2.1622 2.1886 2.15%64 6€6.5742
4 2.1123 2.1444 2.1137 5.6829
5 2.0749 2.1010 2.0711 4.8570
{a) 6 2.0402 2.0646 2.0432 4.2139
7 2.0095 2.0390 2.0021 3.6803
8 1.9793 1.9982 1.9780 3.2127
9 1.9525 1.9765 1.9408 2.8208

10 1.9264 1.9404 1.9124 2.4882
11 1.8991 1.9113 1.8841 2.1583
12 1.8755 1.8857 1.858)1 1.8830
Point U (w/e) Ex EY Ez {all volts)
1 4.00 2.248B1 2.2885 2.2557
2 3.72 2.2242 2.2634 2.2315
3 2.91 2.1622 2.1886 2.1564
4 2.52 2.1123 2.1444 2.11137
(b) 5 e.15 2.0749 2.1010 2.0711
€ 1.87 2.0402 2.0646 2.0432
7 1.63 2.0095 2.0390 2.0021
8 1.42 1.9793 1.9982 1.9780
] 1.25 1.9525 1.9765 1.9408
10 1.10 1.9264 1.9404 1.9124
11 0.96 1.8991 1.9113 1.8841
12 0,83 1.8755 1.8857 1.8581

To ensure that the coordinate system of the hot wire is
in concurrence with that of the wind tunnel, a check can be
accomplished using the nozzle unit and the 3-D probe. The
nozzle unit has a probe suppert mechanism that allows the

probe to be pitched or yawed to within + or - 1/2 a degre=x.
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By design, the Dantec software contains a default coordinate
correction matrix which transforms the coordinate of the probe
to that of the wind tunnel, providing that the number-3 wire
is in the vertical plane. Once calibration polynomials are
generated, proper orientation of the probe can be checked by
adjusting the pitch and yaw to arbitrary angles on the nozzle
unit. To acquire data, a separate module of the software is
entered which applies Jorgensen coefficients (the default
coordinate correction factors) and calculates the three
velocity components (U,V, and W). (Ref. 19: p. A=-2) The
angles of pitch and yaw can be determined¢ readily by using
simple trigonometry. The directional accuracy of the data
acquisition/processing can then be determined by placing the
probe in the calibrator at specific pitch/yax angles and
comparing thase angles with those calculated; such tasts have
shown that this method is accurate to within 3°. Alignment of
the probe in the wind tunnel is accomplished by using a
leveled transit and sighting the number-3 wire in the vextical
plane.

The primary differences between hot fiims and hot wires
lies in their construction, noise 1evelé and high frequerncy
response. In the hot-filw fabrication process, & 0.3 wicron
thick £iim is mounted on a non-elactrically conducting quartz

substrate which acts a8 a thernzi inanlator ard provides

rigidity to the thin film. 'he latter irx made of nickel and




is placed onto the quartz by vacuum sputtering - a process by
which uniform thickness of the senaing element is obtained.
Hot Zilms are more durable but have a lower freguency response
above about 10,000 KHz. There are also heat conduction losses
through the substrate and the film‘s maximum operating
temperature is slightly higher than that of hot wires. The
films also have a higher temperature cosfficient of resistance
and much higher electronic noise lavels at about 1 KHz. The
significant fregquencies encountered in the preaent preciect
were below 100 Hz and the difference in noise levels between
the wires and films is not very important. Furthermore, the
poorer frequency response of the film is unimportant for the
same reason. This study was initiated using hot-wires and
then switched to hot-films, when the nore delicate wires

incurred damage. The calibration process of the film is the

" sama as that for the wires.
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III. BXPPRINENTAL APPARATUS

The equipment and software used in this project were:

A. Dantec 55R91 and 55P91 Hot Wire and Hot Film Probes.

B. Dantec 55C01 CTA Unit and 56C17 Bridge.

C. MetroByte DASH-16 Analog to Digital Converter.

D. Compaq 386/25 Micro Computer.

E. Tri Sigma Corp. 8352 Traverse Controller.

F. DD-963 Model.

G. Llow Speed Environmental Wind Tunnel.

H. Dantec "acqWIRE" Software Package.
A. HOT WIRES AND HOT PILMB

Table II represents the parameters of the hot wire and hot
film sensors used in this project (Ref. 12: p. 9). The 3-D
hot wire and film probes used were the Dantec 55P91 and the
55R91 respecstively. Each probe has three mutually
perpendicular sensors mounted so that the horizontal direction
of the flow is inside a cone of 70.4 degrees (35.2 degrees in
any direction from the x axis). This configuration is
preferred to avoid support prong interference and thermal
crosstalk betwean the sensor wires due to their hot wakes.
(Ref. 12: p. 4) h probe mounted in the 55D45 Nozzle Unit is

shown in Figi.e /.
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Table

II. Bot Wire and Hot Film Paramneters

Material
Diametar
Active
Length
Ambient (20
Temperature
Resistance

Temp. Coef.
of Resist.

Max Tenp.
Min Vel.

Frequency

HOT WIRE
Tungsten

8.89 microns

1.25 mm

C) 0.6 Ohms
(All wires)

0.42%

300 C
0.2 m/s
300 kHz

HOT FI1M
Nickel

70 micron
0.5 micron thickness

1.25 m

4.30 Onms (Film 1)
4.26 Ohms (Film 2)
4.35 Ohms (Film 3)

0.45%

300 C
0.2 m/s
175 kHz

rigure 7.

3=-D Probe Mounted in

$8D48S MNossle Unit
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B. THR CONSTANT TENPERATURE ANEMOMETER UNIT AND BRIDGE

The Dantec 56C01 Constant Temperature Anemometer t¢ jether
. with the 56C17 CTA Bridge constitute a complete constant
temperature anemometer, producing an analog signal. The
complete unit is shown in Figure 8. The leads of the 3-D
probe are connected via 20 meter coaxial cables to the 56C17
Bridge to form one arm of the Wheatstone bridge. A feedback
circuit provides for a voltage over the adjusted bridge
resistance even with the probe in a stationary atmosphere,
since there will be heat loss even then from the sensor due
mostly to natural convection [Ref. 14: p. 2].

The operating temperature is determined by the fixed,
nominal overheat ratio defined as: a = (R-R))/R, where R, is
the ambient temperature resistance of the wire (or f£ilm) and
R is the heated sensor resistance [Ref. 14: p. 8]. BCD
swicches on the front of the 56Cl7, together with the 56N22

Mean Value Unit acting as a digital voltage display, allow the
operator to measure the probe/lead/cable combination
resistance and to adjust for the desired overheat. Internal
switches in the bridge allow the operator to make adjustments
for different cable lengths, gain and upper frequency limit
settings, and for the type of sensor (film or wire). Optimum
settings for gain and upper frequency 1limit need to be
determined during the data acquisition trials. The CTA unit
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Figure 8. 56C01 and 56C17 CTA Unit

has a built-in sguare-wave generator which allows the

frequency response to be optimized.

C. THE ANALOG TO DIGITAL CONVERTER

Analog to digital (A/D) conversions are made through the
MetraByte Corporation 12 bit Dash-16 successive approximation
converter. With a 10 volt range, it is accurate to 2.44
millivolts. Digital representation of the time dimension is
done implicitly, where analog to digital coversion are

successively triggered by a clock, at a sampling frequency of
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1000 Hz (for this project) and stored into direct memory
access [Ref. 20: p. 3-8). The sampling rate can be varied and
nust be greater than the rate at which significant changes in
the analog signal's amplitude can occur. 1In the fregquency
domain, the sampling rate must be at least twice the highest
frequency that is expected to be encountered; otherwise
readings will be in error dQue to aliasing. [Ref. 20: p. 3-29]
With the 1000 Hz sampling rate, the latter will be avoided in
the present study; this figure was obtained from preliminary
data analysis which showed insignificant energy levels in the
spectrum above a few hundred Hz. The A/D board has a 12 micro
second conversion time with a software controlled trigger.

It also has a low-drift, fast settling instrumentation
amplifier/sample-hold combination to ensure that the signals

from all three channels of the hot wire (or hot film) probe

are read virtually simultaneously. (Ref., 21: p. 3)

D. THE COMPUTER

The Compaq 386/25 micro computer, shown in Figure 9 (along
with the HP 7475A Graphics Plotter) is a 25 MHz machine with
an 80386 main central processing unit. There are two math
coprocessors, the 80387 and the Weitek 6117 chip used for
addition/subtraction/series operations. The computer has a
300 M-byte hard disk with a 1.2 M-byte 5-1/4" and a 1.44 M~
byte 3-1/2" floppy capability.

In addition, there is a 16 M-
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Figure 9. Compag 386/25 Micro Computer
with HP 7475A Graphics Plotter

byte random access memory and video graphics arrays with 800
X 600 pixels. Finally, it also has a 80235 cache controller

and the Compaqg MicroSoft-DOS version 3.31 is implemented.

E. THE TRAVERSE BYSTEM

The position of the probe in the tunnel is controlled by
the Tri Sigma Corporation 8352 Controller. (Figure 10) The
probe is mounted on an arm, as pictured in Figure 11, and

positioned well forward toward the direction of the flow and
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Pigure 11. Traverse S8lide with Probe on Mounting Arm




awvay from the supporting structure. The 8352 is capable of
measuring precise position relative to the flight deck of the
model. The system is accurate to within 1/12 mm. per meter.
(0.001 inch per foot). [Ref. 22: p. 67) The traverse slide
manufactured by Linear Industries, is 1.8 meters (6 ft) long,
and is mounted in the tunnel at an angle of 4 degrees to
simulate the approach path of a helo. The slide is supported
from below by two wooden blocks cut at the 4 degree angle.
A ramp is placed in front of the leading edge to divert flow
as smoothly as possible past the slide. The angle of
inclination can be varied by simply replacing the wooden

blocks with blocks cut at different angles.

¥. THE DD~963 MODEL

The model DD-963 (Figure 12) used in the project was
constructed of wood by a private modelmaker in the
Philippines. It was fabricated from the blueprints provided
by the Supervisor of Shipbuilding, Conversion and Repair in
Pascagoula, Mississippi which were reduced tc a suitable scale
at NPS. These unclassified blueprints were of hull curves of
form, port and starboard profile, and bow, steri, and top
aspects. This is the same model as used in the NPS project
of the DD-963 airwake flow visualization. ([Ref. 1: p. 16)

It is 1.22 meters long (1/141 scale) and is mounted on a

mecnanism designed to dynamically simulate pitch, roll, and




Figure 12. DD-963 Model

heave. The mechanism can be adjusted to provide various
static angles of roll, pitch, and yaw. The flocr has a
circular insert around the model to provide for these yaw
adjustments. To prevent the flow of air in or out of the
tunnel during operation, foam weather stripping is attached

(glued) to the circular floor piece around the model.

G. THE LOW-S8PEED WIND TUNNEL
The open circuit, low-speed, flow-visualization wind
tunnel has been modified to simulate the atmospheric boundary

layer over a rough sea. The tunnel is powered by a 25 Horse




Power electric motor driving a fan capable of generating test-
section free-stream velocities of up to 9.6 m/s (31.5 ft/s).

Air enters through a 20.9 m’

(225 ftﬁ section and passes
through a 76 mm (3 inch) long honeycomb and mesh diffuser.
With a 9-to-1 square bell contraction cone, air proceeds to
the 2.32 m® (25 ftz) test section. The test section is square
with dimensions of 1.52 X 1.52 m (5 X 5 £ft). This section is
6.7 m (22 ft) long and at its exit, air passes through the fan
and exhausts to the atmosphere.

Figure 13 shows top and side views of the tunnel [Ref.
22: p. 19). At the beginning of the test section of the
tunnel are four vortex generators as mentioned in the
introduction. They are 0.79 m (31 inches) tall and are
constructed of aluminum angle pieces, which provides strength
and rigidity, and styrofoam filling. A boundary layer of
about the same height as the vortex generators is created as
air flows by. It is felt that the major superstructural
elements of any model used in the overall project will be less
than about 20% of that height. This is to ensure that the
model is within the so-called surface layer of the boundary
layer. A full scale ship at sea would never exceed 20% of the
height of the atmospheric boundary layer in a rough sea.
(Ref. 7: p. 549) The full scale size of this simulated
boundary layer would be over 100 m (325 ft). The upper mast

of the DD-963 model stands a maximum of 0.28 m (11 inches)
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from the floor with the flight deck at 76 mm (3 inches).

The vortex generators produce the shear and some of the
turbulence in the tunnel. They are quarter elliptical in
shape when viewed from the side and triangular (or wedge
shaped) when viewed from the top or in any horizontal section.
They have a sharp leading (windward) edge and widen to a
maximum of 76 mm (3 inches) in width at the base. To further
refine the velocity profile, three 0.76 m (30 inch) high, 51
mm (2 inch) diameter tapered cones were added and placed
equidistant between the vortex generators. The cones and the
vortex generators were all connected at the top with a 1.52
m (5 ft) long, aluminum support rod of airfoil shape and with
the chord parallel to the flow. Further downstream, more
turbulence was generated by roughness elements, or turbulence
generators as shown in Figure 14. Also shown in Figure 14
(looking upstream) are the vortex generators and at the bottom
of the photo the model is shown. 9.5 mm (3/8 inch) diameter
wooden dowels of varying lengths between 25 and 152 mum (1 and
6 inches) were placed on a 0.46 X 1.5%2 m (1.5 X 5 ft) peg
board on the floor of the tunnel. These dowels were necessary
to bring turbulence intensity levels to a realistic value at
flight deck height. [Ref. 1: p. 13)

At the time this boundary layer was established by
Bolinger, (Ref. 23] no acculrate means were available to

measure velocities below about 1.5 m/s, since this corresponds

34




- —— . s s o e 4

View Upwind of Model, 7Turbulence Goherato:s
and Vortex Generators

to about 174 m- (0.01") ot water height: the result was thar,
zt the lowes: two points in the layer, the velocities cbtuained
wer: somewhat righer and turbulence levels measured lower than
they actually were. It was found that the additi-nal

turbulence generators could be removed, which allowed the

velocity to increase near the floor, without causing tne

turbulerice levels to drop belcw those previously rep::~ed i’

References 1 and 23.




H. THE “ACQWIRE" SOFTWARE PACKAGE

The Dantec "Acgwire" software package was installed into
the Compaq 386/.)5 microcomputer to be used as the data
acquisition and analysis mechanism for this project. The
program performs data acquisition, instrument control, data
processing, file manipulation, and graphic outputting of
results. [Ref. 29: p. 1-2] The subroutines in Acqwire are
all menu driven and contain options for automatic probe
calibration, plotting of calibration data with error analysis,
data zcquisition, veccor conversion to reference coordinate
system, and data storage.

Data analysis includes computation of mean, root mean
square (RMS), turbulence intensities, skewness, flatness, and
cross moments. It also performs calculation and display of
the block averaged power spectral density for any channel,
calculation and display of the single point autocorrelation
function, and outputting graphic presentations to a plotter
or printer. Unfortunately, this software was (and still is)
in the process of development, contained many features that
did not function properly, and it was the cause of many delays

and much extra woHrk.
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Iv. GENERAL SIMULATION

Developing an accurate simulation for the interface has
been a feat that has not been accomplished with much
confidence. Modeling the free strsam airflow to the ship must
be achieved with reasonable accuracy. Past efforts, such as
White and Chaddock in 1967 (Ref. 24), used uniform velocity,
very low turbulence, distributions in an attempt to simulate
the real flow using a model of USS Lexington. Analysis by
loezos in that same year found that turbulence intensities
were up to three timas greater in the real environment than
were recorded in the tunnel. [Ref. 25] Some ten years later,
Boeing Vertol repeated the same mistake. [Ref. 3)

In Fortenbaugh's attempt at the complete interface
simulation, he defined a data-base involving nine parameters.
(Ref. 4: p. 2) They vere:

(1) Wind over deck magnitude - V,

(2) Wind over deck direction relgtive to the ship - y 4

(3) Ambient wind magnitude - V.,

(4) Ship speed - V,

(5) Ship's head relative to predominant wave direction u,

(6) Ambient wind direction relative to ship - ¥,

(7) Signiticant wave height =~ H,

(8) Modal wave period ~ T,

(9) Sea state - 88

The presant prcject is concerned only with the resultant,
Vo 8N4 the subsequent ship airwake along the approach path.

The term "wind over deck" (WOD) is ambiguous and will not be
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used here; the correct term, "relative" will be used instead.
Future studies will attempt to model the ship's motion
(oscillation) as a function of sea state, wave period, and
significant wave height. Ship speed and true wind speed are
not separated in the present study, since the ship is
stationary. The relative velocity is then composed of the
wind component only: this leads to the highest turbulence
intensities and the worst-case scenario. A ship velocity
component added to a given true wind will give an increased
relative speed, and since the free-stream fluctuations will
remain the same, the resultant turbulence intensity is
reduced.

Fortenbaugh's airwake model is derived from the airwake
data bagse established by Garnett in 1976 for the FF~1052. By
using Strouhal number scaling, he assumed that the DD-963 and
FF-1052 superstructures were similar enough that their
Strouhal numbers would be the same. (Ref. 4: p. 7) Another
important assumption for the airwake model is that ajirwvake
velocity components act on the aircraft center-of-gravity.
For this project, using single point data, there is no choice
but to accept this assumption. Future studies will consider
the effects of non-uniform winds and turbulence on various
components of the helo during approach, launch, and recovery.
Moreover, in Fortenbaugh's model, full scale turbulence is

represented as the product of the standard deviations of the




global airwake statistics and the first-order-lag-filtered
white noise [Ref. 4: p. 9). This replaces a second-order-lag-
filtered system previously established ([Ref. 26: p. 6).
Fortenbaugh took Garnott'slgsya base, which was constructed
as described in the Introduction and extracted, presumably by
interpolation, the velocities, turbulence intensities and
spectrum functions along two flight paths to the touch-down
point. One path was along the ship longitudinal axis and the
other at a 30° angle to starbosrd of the ship's axis; both
paths approaching from the stern of the ship. A briet
comparison will be made, in Chapter VI, between the present
results and those presented there.

A more refined version of the turbulence model was
presented by R.L. Nave also in 1978, using the same data base
[(Ref. 27: p. 2]. It is claimed that the first-order system
reduced the degree of complexity, and increased the accuracy
of the predictions. Hanson claimed an improvement on this
model using a scheme involving linear interpolation to filter
the output of the white noise; thus, the frequency content of
the turbulence was regulated by varying the interval at which
random number generators were called [Ref. 28: p. 2). The
result of this is that the high frequency content of the input
signals is reduced prior to reaching the first-order-lag-
filters. The white-ncise is then shaped by the filters to

simulate the effect of the environment on the helo and the
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independent outputs from the x-,y- and z-direction simulations
are fed to each of three servo-mechanisms that drive the
simulator cab.

Hanson did not compare the predictions of his refined
model with the experimental data base, but did attempt a
validation of it using experienced pilots. The results
indicated that reductions of 60-70% in the variances were
required before the performance became somewhat realistic.
(Raf. 28: p.31) It is clear that the single-point model needs
much more study before it is considered viable or before it
is abandoned in favor of a multi-point model.

The single-point data-base obtained in the present study
will be used to replace the existing faulty one; validation
of the interface will then be attempted using Hanson's
improved filtering techniques.

The simulation of the influence of shear on a helo have
been explored in several papers. (Clement and Jewell, 1985,
(Ref. 29), Johns, 1986, {Ref. 30], and previocusly mentioned,
Hansen, 1986, [Ref.28)) Evaluation of the Flying Qualities
Requirements (FQRs) has also been made by John Johns using the
NASA Ames Research Center's Vertical Motion Simulator, several
Navy helo pilots, and a generic mathematical model of a single
rotor helo known as "ARMCOP" (Ref. 30). Quantification of the

pilots' opinion was achieved using the Cooper-Harper Pilot

Opinion Rating (CHPOR) which is an objective scale from "one"
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(easily controllable) to "ten" (uncontrollable). Some of the
simulation results did not clearly define boundaries for FQRs
but they did shed some insight on the use of simulators in
conducting flying quality tests. The overall pilot opinion
was that the simulation was more difficult to fly than the
real world helo. The primary reason for this is that the
visuals for the VMS generate only crude, two-dimensional
images which made it difficult for the pilots to realize depth
perception. A major encouraging result of this test was that
CHPOR ratings were fairly consistent among the pilots and
naturally the pilots found it more difficult to "fly" the

simulation with rnugher sea states and wind conditions.
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V. EXPERIMENTAL PROCEDURE

The first step in this study was to calibrate the
anemometer and the tunnel. Wind tunnel velocity and
turbulence naps were drawn to establish reasonable uniformity
of the flow and conformity to the required simulated boundary
layer. This was followed by acquisition of a data-set for a
"flight" through the clean tunnel along the desi_-ed flight
path, which was always at an angle of 4° to the horizontai.
Later runs, with the model in position, showed its influence
on the boundary layer flow.

The reference fr.me for data acquisition was oriented so
that "X" pointed in the direction of the flow, and had the
component of the velocity of U, the "Y" component is the
transverse (cross-tunnel) one, pointing to port, with the
velocity component of V and the "2" axis is vertical, and with
the velocity component of W. This is a left-handed coordinate
system and was chosen so that it was in compliance with the
probe orientaticon.

For all flight-path runs the probe was 25 mm (1") above
the touchdown point at the end of each "flight". Data ware
takan at 15 points of the following fractions of the ship
length, aft of the touchdown point in the wake: 0 (at

touchdown), 0.042, 0.084, 0.125, 0.139, 0.188, 0.253, 0.335,




0.418, 0.489, 0.565, 0.627, 0.732, 0.836, and 1.0. For

reference, the length of the DD-963 is 171.6 meters (563 ft).

Three flight-paths to the flight-deck from the stern were
considered: the 30° port, the stern (0°), and the 30° starboard
approacheas.

Data for the spectra were obtained from 16384 samples,
which were acquired at 2.5 KHz and averaged over 32 blocks.
No windowing was used and the analog low-pass filters were set
at 3 KHz to reduce noise and aliasing. For the velocities,
turbulence intensities, velocity histograms and auto-
correlations, sample sizes of 8192 were used with a sampling
frequency of 1 KHz. Finally, all data were processed and
graphs drawn.

Preliminary runs showed extremely large levels - up to
several hundred percent - of turbulence intensity for the
transverse V, and vertical W, velocity components in the wake.
These high values were a consequence of extremely small mean
velocity values for these two components. When the Root Mean
Square's (Rms) of the velocity fluctuations are made non-
dimensional with the freestream velocity, U,, at ship
anemometer height, instead of the mean of V and W, the values
are, in magnitude, comparable with those of the U component.
Furthermore, these ratios are desirable data, since they are
used in the simulation. All the velocities in the wake are

made non-dimensional with U,, for the latter reason.
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VI. DISCUSSION AND RESULTS

A. CLEAN TUMNEL (NO MODEL PREBENT)

A mean velocity and turbulence intensity map for the clean
(empty) tunnel was initially constructed as shown in Figure
15 from the data points of Table IIXI. Fifty-six points (8 X
7 matrix) were taken in all for the map. The velocities show
a reasonable uniformity across the test section (in the Y
direction) and the turbulence intensity profiles are in the
range given in Reference 2 for rough sea.

The mean velocity profile (of the mean U velocity) across
the test section was found by a least squares fit to the data
of Table III to have an index, n, of 0.135 - somewhat high for
rough sea. The auto-correlation of the along-wind component
at the elevations 50, 75, 100 and 200 mm (2",3%",4" and 8") on
the tunnel center-~line in the clean tunnel are shown in Figure
16. The 75 and 200 mm levels are the elevations of the flight
deck and ship anemometer respectively. The auto-correlations
have the expcnential-decay characteristic wup to a
characteristic time, which was estimated by the point where
the ordinate had dropped to 1/e = 0.368 of its maximum. This
characteristic time, when multiplied by the freestream

velocity at this point, gives an estimate of the integral

length scale. The values thus obtained were found to be 50,




Table IlI.

Functions of Position

Velocity and Turbulence Data as

- . e e e e e e e e e aaee e -eee e - =

VELUCITIES (m/s)

Z - Height Above the Floor (mm)
75 100 125 150 200

1.52  1.67 1.71 1.72 1.77
1,51 1.63 1.70 1.70 1.7%
1.34  1.45 1.%2 1.%7 1.84
1.55  1.61 1.66 1.70 1.7%
1.37 1,55  1.54 1.87 1.68
.51 1.57 1.64 1.65 1.7)
1.44  1.%9 1.68 1.71 1.78
1.46 1.%8  1.64 1.56 1.73
0.08 0.07 0.08 0.07 0.0%5
0.66 0.7) 0.74 0.7% 0.78

TURBULENCE INTENSITIES (%)

Z = Height Above the Floor (ma)
75 100 125 150 200

12.7 8.8 7.6 6.6 6.4
11.2 8.6 7.7 7.4 6.8
12.9 10.9 9.2 9.2 8.2
10.2 8.8 7.5 7.4 6.7
13.2 10.5 9.5 9.0 7.6
9.0 8.4 7.3 6.0 6.5
12.8 10.2 8.1 7.4 S.0

S0
8§ Tun.
Wwidth
25.0 1,42
b | 1.40
41.7 1.23
$0.0 1.44
58.3 1.29
66.7 1.36
75.0 1.27
;o;n- o 1.34
[ 0.09%9
u/v, 0.61
50
$ Tun,
width
2%.0 15.5
33.3 14.8
41.7 16.4
$0.0 12.8
88.) 16.0
66.7 13.0
75.0 16.8
;c;n- o 1%.0

1.8 9.4 8.3 7.7 6.9

$00

1.885
1.80
1.82
1.84
1.81
1.835
1.88

810

1.96
1.93
2.08
2.0%5
2.02
2.02
i.ee

1.84
0.03
0.8)

800

6.3
6.3
5.4
8.2
S.9
6.2
4.0

2.00
0.0%
0.91

| pR)
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Figure 15. Velocities (a) and Turbulence (b) as Punctions

of Vertical Position of Boundary Layer
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63, 80, and 44 mm respectively for the given elevations. The
volue at 200 mm seems to be an anomaly - possibly due to
. deviation from the exponential decay curve. There was
insufficient time to do an integration to find the area under

the curve, which would have given a more accurate estimate.

AUTO-CORRELATION
—_— 50 mm
4.00 s e+ 7% WA

-~ o= 100 =B
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[ SOmm = 1.34 n/s
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. 200 =a = 1.91 n/8

I X
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|
-0 .20 1' 'J]
(] 80 100 180 800 280
TIME DELAY (msec)

Pigure 16. Autocorrelations of 50, 7S 100, and 200 mm
Vertical Position in Clean Tunnel

The spectrum functions for the u velocity component are
shown in Figures 17 and 18. All exhibit the classic inertial

sub-layer characteristics at high frequency, and peak at
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trequehcies between 2 and 10 Hz. Tney were similar to
atmospheric snectra. (Ref., 2)

The méan valocities and the turbulence levels, both made
non-djmersional with the freestream veliocity at anemometer
height U,, along the fligh* paths for the clean tunnel, are
superimposed on the va. - . the corresponding flight path,

and will be discussed . .axXt two sections.

B. THE ZERO-YAW APPROACH

The mean velocities U, V, and W, made non-dimensional with
U,, along the stern flight path (at zero yaw relative to the
ship axis), together with the profiles in the clean tunnel
along the same flight path, are shown in Figures 19 and 20.
The clean-tunnel value of U never drops below 0.9 U, but, with
the model, U drops down to about 0.18 of U, over the flight
deck and gradually recovers to about 0.8 of U, one ship-length
away. The deviation of the mean of V from the clean~tunnel
value is less than about 10% of U, and gradually approaches it
with distance from the ship. The W-component shows a somewhat
anomalous behavior. The values with and without the model are
almost identical and both values are slightly negative. Somnre

unevenness in the tunnel floor giviny a small (2.5°

misalignment of the probe could account for this behavier.
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U COMFONENT VELOCITY vs. TRAVERSE POSITION (LTERO YAW)
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W COMPONENT VELOCITY vs. TRAVERSE POSITION (ZERO YAW)
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Figure 20. W Component Velocity vs. Traverse Position

The along~wind turbulence intensity is plotted in Figure
21. The lower curve is for the clean tunnel and shows the
value dropping from about 12% to about 7%. With the model,
there is & rapid increase of intensity from about 29% to about
35% in about 5% of a shiplength, followed by a very rapid
decline to about 14%. The other turbulence values, given by
the RMS values for U, V, and W divided by U,, appear in Figure
22; these shov the U and W profiles growing rapidly to about
10% and the V-profile more slowly to about 8%. Figures 23 and

24 are histograms of the U-component of velocity and
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Pigure 21. Turbulence Intensity vs. Traverse Position

show a distribution that is very skewed from the Gaussian for
the flight deck point, 23(a) and the next point aft, 23(b).
This throws suspicion on the turbulence measurements at these
two points. Further aft, there is a rapid recovery to the
Gaussian distribution with distance from the ship. Full
recovery is seen at about 1/4 ship length aft of the touchdown
point.

The auto-correlation over the flight deck yields an
estimate showing that the along-wind length scale has been

reduced by a factor of four, relative to the value in the

clean tunnel. This scale, however, gradually approaches the
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Figure 22. Rms/U, vs. Traverse Position

clean~tunnel value with distance from the ship and equals it
at one ship length. These auto-correlations are shown in
Figures 25 and 26.

The Spectrum functions are depicted by Figures 27 and 28.
There is a noticeable flattening of all these spéctra relative
to the ones described in Section A above; it appears that the
presence of the model reduces substantially the low frequency
energy in the flow, resulting in flatter spectra. Energy

distributions above about 100 Hz are not affected.
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C. 30° Port and Starboard Yaw Approaches

Due to the fact that the model was moved to the yaw
positions about its geometric center (vice helo touchdown

point), both 30° approaches had thejir own respective clean

tunnel approach data runs taken. This saction will compare

the two with each other and make reference to the 0° yaw data
in the previous section.

The individual components of the mean velocities were

plotted against clean tunnel runs and are shown in Figures 29,

30, and 31. The U component velocities are nearly identical

for all three (port, starboard, and 0° runs however

variations in the V and W components can be seen. Moving aft

along the flight path, the V component appears to move away
from the clean tunnel value for the port approach where the

starboard approach V component moves eventually moves toward

the clean tunnel value. In any case the magnitudes are still

less than 10% of U,. Both W components increase rapidly

within a 20% ship length and show a peak at about 10% U,.

Moreover, both stay within about 15% of one another along the
approach path.
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V CORPONENT VELOCITY vs. TRAVERSE POSITION (30° PORT YAW)

D.!ST-

= « = with sodel
‘———  clean tunnel

0.3~

vescIry (v/u,)

4 1 — Il 1
¢.00 T T T ] m!
0.00 0.a0 0.40 0.80 0.80 1.00
TRAVERSE POSITION (FRACTION OF SNIP LENGTH)
LALINS MO,
(a)
V COMPONENT VELOCITY ve. TRAVERSE POSITION (3¢° 3TBD vAw)
“ 0.80—
~ « = with sodel
i - ¢lean tunnsl
-
o
-
7/
e }/ e
3 - ’
- - -~
> -~ T~ e
0.00 - S~ Vd
E - - /
E b
S
i 7/’
[y . 1 . . J—
-0.80 | | T ] 1
0.00 0.80 0.40 0.80 0.80 $.00

TRAVERSE POSITION (FRACTION OF SHIP LEZNGTH)

L ALINE MM
. (b)

Figure 30. V Component Velocities ve. Traverse Position
(a) 30° Port and (b) 30° 8tbd Yaw

63



T
i

W CONPONENT YELOCITY va. TRAVERSE POSITION (30° porT Y2M)
©.80
-
) = ~ ~ with model *
L ~———  clean tunnel
" - .
-
: /TN
9.00+4
E — ~
~
1 ~—
F ety CREED . am— -—
i
i 1 . 1 ]
©.s0 T ] i T |
0.00 0.20 Q.40 0.80 0.80 3.00
TRAVERSE POSITION (FRACTION OF SHIP LENGTH)
LAuNa MO
(s)
¥ COMPONENT VILOCITY ve. rpAvRwE FOSITION (30° 879D vaw)
a
.80 -r
o +
- = = with wodae} . :
s === Glasn tunnel A ]
)
2 - ————
5 4 e~ Y - L
. o0.00-4 i M""s..~.,’ .
k - 3
: ' ‘
{
5 .
| e 3 { ']
! 9.80 ] ! 13 ] -
{ o.00 0.80 .40 o.90 Q.3 $.0u
! TPAVERSE TOSITION (FRASTION 7 S1-t cumgray
LA M et e
(&) ’

~ Figurs 31. W Component Velocities va. Wtaverse Fosition
(a) 30° Port and (b) 30” 8tba yay

64



Turbulence intensities for both 30° runs are similar in
shape to those of the 0° data with the exception that the
starboard run magnitude is greatest, peaking above 50% at the
touchdown peint. The port approach peak has also a large
turbulence level of 46% just aft of the touchdown point. Both
graphs of turbulerce are shown in Figure 32. As with the 0°
yaw run, the histograms for the U components of velocity are
skew2d drastically at the touchdown point and recover rapidly
to an approximately Gaussian shape distribution by 1/4 sghip
length aft of the touchdown point. Figures 33 and 34 show the
histograms at the touchdown and the 6% aft points
raspectively. Once again, turbulence levels at these points
are suspect, as was noted in Section B for the 0° run. Rms
values for U, vV, and W divided by U, (Figure 35) show that,
like the 0° run, U and W components increase mot- rapidly and
are higher in magnitude (to about 15%) than the V component
which levels at 8%. This measure of turbulence agrees with
the previous measure of turbulence intensity in that
turbulence for the 30° runs are about 5% greater than that

found in the 0° run.
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TURBULENCE INTENSITY ve. TRAVERSE POSIYION (30° yowr YAW)

= ~ o with wodel
- e glesn tuanel

©.88

4 L. 2.

o.

0.00 T

Lm.-ﬂﬂl—-

-T

i 1
0.80 0. 40

TRAVERSS POSITION

(FRACTION OF SHIP LENGTH)

[-1-}

(a)

o .88 -

9.'0-1

~SURSULENCE INTENSITY ve. TRAVERSE POSITION (30° STSO YA}

with model
clean turnel

e——t

1 .

a.00
-]

LN N

3. 1

1 } 1 1
.80 0,40 0.80 0.80

TRAVERSS POSITION (FRACTION oy SRIY LENCTH)

$.00

(»)

rigure 32.

Y 8 P o P —Y—- .
et e 0 2P 4 OV e oy

Turbulence Intensities vs. Traverse Position
(a) 30° Port and (D) 30° stbd Yaw

66




- )

73

Eik,

e

——
GNP

I

L
8.
v.i
]

t
)
.
.
B

I ]

a
.38
pay

(a)

AN

) Rty
SODNUNRNNNNNN > AN
AM%%%%%%M AN
< \
VRN AN . ORNNNNRNNNNNNNNNK
5 5 SNNNANINIRRRRNNNNW

AN
ANININRONRNNNRNRNNRRRY
DO

im/e)
NXSTOGRAN (30° STBD YAW at TOUCHDOWN)

o

NISTOGRAR (30° PORT YAW at TOUCHDOWN)

R RRTTRRTRRRR Ry
7/7/////7////////////ﬁ////////////////////é

HMean:

l!.qu

{(3) MOIANETULSIG (3) mollnaimasio

(a) 30° port and

Yav at Touchdown

(m,'®)
P

(b)

Y Ristograms

Stba

vel
67

VYelooit

(b) 30°

o=

rigure 33.

e
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The analysis of the auto-correlation shows that there is
consistency with all three tunnel runs in that the along-wind
length scale is reduced by a factor of sixteen at the flight
deck touchdown point in reference to those values found in the
clean tunnel and that full scale recovery is found at about
one ship length from the touchdown. The auto-correlations are
shown in Figures 36-39. The starboard approach graphs show
an oscillation at lag times beyond 50 msec not seen in the

port runs:; however, at the 36.8% point used for determining

the length scales, the graphs are virtually identical.
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The Spectrum functions (Figures 40-43) show the same
general flattening as observed in the 0° run and it can be
observed that the starboard yaw contains more energy than that
of the port runs and, referring to Figures 27 and 28, more
energy than that of the 0° runs. This can be attributed to
the higher levels of turbulence in the starboard approach.

At the flight deck, neither the starboard nor the port
runs show significant peaks in the spectrum function below 10
Hz as was observed in the 0° run. As the approach path is

traversed, specific frequency peaks can be seen between 3 and

30 Hz.
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D. BRIBF CONPARISON WITH PREVIOUS DD-963 AIRWAKE STUDY

Recalling that since the major difference between the
tests run by Garnett [Ref. 5], the mathematical analysis of
Fortenbaugh [Refs. 4 and 26), and this project is that the
velocity profiles and turbulence levels were different (See
Figure 1), it is reasonable that the results of this project
would yield higher levels of turbulence and lower velocities.
In fact, this is the case. Fortenbaugh's analysis showed that
the component velocities' standard deviations, divided by the
free stream velocity at anemometer height (Rms/U bar), as a
measure of turbulence, reduces to near zero at one ship length
from the touchdown point for all three velocity components.
[Ref. 26: pp. 63-65) The results of this project show that
this is not the case and the effects of the environmental
atmospheric velocity profile are obvious with turbulence
intensity levels of 15-25% evident at this point.

A similarity in the two sets of results is that turbulence
intensity levels are significantly reduced (40-50% for this
project, 50-75% for the Boeing data) within 25% of a ship
length aft of the touchdown. In general, differences of
several factors in both velocities and turbulence intensities

were found. only in a qualitative sense was there much

agreement between these results and the Boeing data.
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VII. CONCLUSIONS AND RECOMMEMNDATIONS

The results of this study indicate that a plausible

airwake data base for the DD-963 has been established. 1Its

efficacy must ultimately be established by its successful

integration into a suitable simulator.

Some recommendations for future studies are:

(1)
(2)

(3)

(4)

(5)

(6)

(7)

Test of these data in the NASA simulator.

Investigate the wake using larger models in an
expanded test section to obtain better measurement
resolution.

Study the influence of ship oscillations on the
wake.

Examine the influence of scale on the data and on
the relative success of the simulation.

Since tche project concerned itself with a helo
flying directly into a ship's relative wind (which
is not always the case in the real world), expanded
studies should accompany the present project to
include, (in addition to those mentioned in the
Introduction) helos approaching at angles other
than that of straight into ship's relative wind.

Obtain a better software program for data
acquisition and analysis. The present software
package "Acqwire" is still under development and,
as was mentioned previously, was the cause of
numerous delays in this project. Malfunctions of
the program include: (but are by no means limited
to) the inability to apply windowing to spectrum
functions even though the capability is
(supposedly) there, the inability to scale graphs
and plot them without causing the entire computer
system to "lock-up," and failure to include an
accurate operating manual with the numerous changes
that have been received.

Use electronic linearizers for all three channels
and check the higher turbulence intensity values.
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